Metabolic engineering of Bacillus subtilis for growth on overflow metabolites
نویسندگان
چکیده
BACKGROUND The genome of the important industrial host Bacillus subtilis does not encode the glyoxylate shunt, which is necessary to utilize overflow metabolites, like acetate or acetoin, as carbon source. In this study, the operon encoding the isocitrate lyase (aceB) and malate synthase (aceA) from Bacillus licheniformis was transferred into the chromosome of B. subtilis. The resulting strain was examined in respect to growth characteristics and qualities as an expression host. RESULTS Our results show that the modified B. subtilis strain is able to grow on the C2 compound acetate. A combined transcript, protein and metabolite analysis indicated a functional expression of the native glyoxylate shunt of B. lichenifomis in B. subtilis. This metabolically engineered strain revealed better growth behavior and an improved activity of an acetoin-controlled expression system. CONCLUSIONS The glyoxylate shunt of B. licheniformis can be functionally transferred to B. subtilis. This novel strain offers improved properties for industrial applications, such as growth on additional carbon sources and a greater robustness towards excess glucose feeding.
منابع مشابه
Flux Distribution in Bacillus subtilis: Inspection on Plurality of Optimal Solutions
Linear programming problems with alternate solutions are challenging due to the choice of multiple strategiesresulting in the same optimal value of the objective function. However, searching for these solutions is atedious task, especially when using mixed integer linear programming (MILP), as previously applied tometabolic models. Therefore, judgment on plurality of optimal m...
متن کاملMetabolic Perturbations in a Bacillus subtilis clpP Mutant during Glucose Starvation
Proteolysis is essential for all living organisms to maintain the protein homeostasis and to adapt to changing environmental conditions. ClpP is the main protease in Bacillus subtilis, and forms complexes with different Clp ATPases. These complexes play crucial roles during heat stress, but also in sporulation or cell morphology. Especially enzymes of cell wall-, amino acid-, and nucleic acid b...
متن کاملAlgal Crude Fucoidan Alone or with Bacillus subtilis DSM 17299 in Broiler Chickens Diet: Growth Performance, Carcass Characteristics, Blood Metabolites, and Morphology of Intestine
This study was conducted to evaluate the effects of algal fucoidan and probiotic Bacillus subtilison growth performance, blood metabolites and intestinal morphology in broiler chickens. A total of 250 one-day-old Ross 360 male broiler chickens were randomly distributed into 5 treatments (6 replication pens/treatment) and reared for 42 d. The 5 dietary treatments were as follow: 1) a corn-soybea...
متن کاملBacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture.
The energetic efficiency of microbial growth is significantly reduced in cultures growing under glucose excess compared to cultures growing under glucose limitation, but the magnitude to which different energy-dissipating processes contribute to the reduced efficiency is currently not well understood. We introduce here a new concept for balancing the total cellular energy flux that is based on ...
متن کاملGenome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications
Background: A genome-scale metabolic network model (GEM) is a mathematical representation of an organism’s metabolism. Today, GEMs are popular tools for computationally simulating the biotechnological processes and for predicting biochemical properties of (engineered) strains.Objectives: In the present study, we have evaluated the predictive power of two ...
متن کامل